• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Characteristics of olive mill solid residue and its application in remediation of Pb2+, Cu2+ and Ni2+ from aqueous solution: Mechanistic study

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2014-09
    Author
    Hawari, A.
    Khraisheh, M.
    Al-Ghouti, M.A.
    Metadata
    Show full item record
    Abstract
    This study investigated the use of untreated olive mill solid residues (OMSR) as a solid extractant for Pb2+, Cu2+ and Ni2+ ions from aqueous solution. It was shown that the solution initial pH value affected the metal adsorption capacity and behavior. However, over the pH range of 3.0–5.0, pH-related effects were not significant. Meanwhile, at lower pH values the uptake capacity decreased. It was found that the qmax values are (0.54, 0.59 and 0.63), (0.46, 0.63, and 0.69) and (0.31, 0.42, and 0.47) meq/g for Pb2+ Cu2+ and Ni2+ at 298, 308, and 328 K; respectively. The uptake capacity order is: Pb2+ > Cu2+ > Ni2+. It was also concluded that the R–P and Langmuir models clearly described the metals adsorption onto OMSR more than that of Freundlich and D–R models. The thermodynamics constants ΔH0, ΔS0 and ΔG0 of the adsorption process showed that the adsorption of Pb2+ and Cu2+ was endothermic and spontaneous in nature and an opposite finding was observed for Ni2+ ions. In conclusion, the mode of interaction between Pb2+, Cu2+ and Ni2+ ions and OMSR was investigated by comparing the changes in the position and intensity of the surface functional groups using FTIR technique.
    DOI/handle
    http://dx.doi.org/10.1016/j.cej.2014.04.065
    http://hdl.handle.net/10576/4150
    Collections
    • Biological & Environmental Sciences [‎931‎ items ]
    • Chemical Engineering [‎1198‎ items ]
    • Civil and Environmental Engineering [‎862‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video