• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Cooperative access schemes for efficient SWIPT transmissions in cognitive radio networks

    Thumbnail
    Date
    2015
    Author
    Shafie, Ahmed El
    Al-Dhahir, Naofal
    Hamila, Ridha
    Metadata
    Show full item record
    Abstract
    We investigate joint information and energy cooperative schemes in a slotted-time cognitive radio network with a primary transmitter-receiver pair and a set of secondary transmitter-receiver pairs. The primary transmitter is assumed to be an energy-harvesting node. We propose a three-stage cooperative transmission protocol. During the first stage, the primary user releases a portion of its time slot to the secondary nodes to send their data and to power the energy-harvesting primary transmitter from the secondary radio-frequency signals. During the second stage, the primary transmitter sends its data to its destination and to the secondary nodes. During the third stage, the secondary nodes amplify and forward the primary data. We propose five different schemes for secondary access and powering the primary transmitter. We derive closed-form expressions for the primary and secondary rates for all the proposed schemes. Two of the proposed schemes use distributed beamforming to power the primary transmitter. We design a sparsity-aware relay-selection scheme based on the compressive sensing principles. Our numerical results demonstrate the gains of our proposed schemes for both the primary and secondary systems. 2015 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/GLOCOMW.2015.7414050
    http://hdl.handle.net/10576/41626
    Collections
    • Electrical Engineering [‎2822‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video