عرض بسيط للتسجيلة

المؤلفHamila, Oumaima
المؤلفRamanna, Sheela
المؤلفHenry, Christopher J.
المؤلفKiranyaz, Serkan
المؤلفHamila, Ridha
المؤلفMazhar, Rashid
المؤلفHamid, Tahir
تاريخ الإتاحة2023-04-04T09:09:08Z
تاريخ النشر2022
اسم المنشورMultimedia Tools and Applications
المصدرScopus
معرّف المصادر الموحدhttp://dx.doi.org/10.1007/s11042-021-11579-4
معرّف المصادر الموحدhttp://hdl.handle.net/10576/41631
الملخصMyocardial infarction (MI) is a life-threatening disorder that occurs due to a prolonged limitation of blood supply to the heart muscles, and which requires an immediate diagnosis to prevent death. To detect MI, cardiologists utilize in particular echocardiography, which is a non-invasive cardiac imaging that generates real-time visualization of the heart chambers and the motion of the heart walls. These videos enable cardiologists to identify almost immediately regional wall motion abnormalities (RWMA) of the left ventricle (LV) chamber, which are highly correlated with MI. However, data acquisition is usually performed during emergency which results in poor-quality and noisy data that can affect the accuracy of the diagnosis. To address the identified problems, we propose in this paper an innovative, real-time and fully automated model based on convolutional neural networks (CNN) to early detect MI in a patient's echocardiography. Our model is a pipeline consisting of a 2D CNN that performs data preprocessing by segmenting the LV chamber from the apical four-chamber (A4C) view, followed by a 3D CNN that performs a binary classification to detect MI. The pipeline was trained and tested on the HMC-QU dataset consisting of 162 echocardiography. The 2D CNN achieved 97.18% accuracy on data segmentation, and the 3D CNN achieved 90.9% accuracy, 100% precision, 95% recall, and 97.2% F1 score. Our detection results outperformed existing state-of-the-art models that were tested on the HMC-QU dataset for MI detection. This work demonstrates that developing a fully automated system for LV segmentation and MI detection is efficient and propitious. 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
راعي المشروعThe work of Sheela Ramanna and Christopher J. Henry was funded by the NSERC Discovery Grants Program (nos. 194376, 418413).
اللغةen
الناشرSpringer
الموضوع3D convolutional neural network
Detection
Echocardiography
Myocardial infarction
Video segmentation
العنوانFully automated 2D and 3D convolutional neural networks pipeline for video segmentation and myocardial infarction detection in echocardiography
النوعArticle
الصفحات37417-37439
رقم العدد26
رقم المجلد81
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة