• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Fully automated 2D and 3D convolutional neural networks pipeline for video segmentation and myocardial infarction detection in echocardiography

    Thumbnail
    Date
    2022
    Author
    Hamila, Oumaima
    Ramanna, Sheela
    Henry, Christopher J.
    Kiranyaz, Serkan
    Hamila, Ridha
    Mazhar, Rashid
    Hamid, Tahir
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Myocardial infarction (MI) is a life-threatening disorder that occurs due to a prolonged limitation of blood supply to the heart muscles, and which requires an immediate diagnosis to prevent death. To detect MI, cardiologists utilize in particular echocardiography, which is a non-invasive cardiac imaging that generates real-time visualization of the heart chambers and the motion of the heart walls. These videos enable cardiologists to identify almost immediately regional wall motion abnormalities (RWMA) of the left ventricle (LV) chamber, which are highly correlated with MI. However, data acquisition is usually performed during emergency which results in poor-quality and noisy data that can affect the accuracy of the diagnosis. To address the identified problems, we propose in this paper an innovative, real-time and fully automated model based on convolutional neural networks (CNN) to early detect MI in a patient's echocardiography. Our model is a pipeline consisting of a 2D CNN that performs data preprocessing by segmenting the LV chamber from the apical four-chamber (A4C) view, followed by a 3D CNN that performs a binary classification to detect MI. The pipeline was trained and tested on the HMC-QU dataset consisting of 162 echocardiography. The 2D CNN achieved 97.18% accuracy on data segmentation, and the 3D CNN achieved 90.9% accuracy, 100% precision, 95% recall, and 97.2% F1 score. Our detection results outperformed existing state-of-the-art models that were tested on the HMC-QU dataset for MI detection. This work demonstrates that developing a fully automated system for LV segmentation and MI detection is efficient and propitious. 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
    DOI/handle
    http://dx.doi.org/10.1007/s11042-021-11579-4
    http://hdl.handle.net/10576/41631
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video