• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Federated Learning in NOMA Networks: Convergence, Energy and Fairness-Based Design

    Thumbnail
    Date
    2022
    Author
    Mrad, Ilyes
    Samara, Lutfi
    Al-Abbasi, Abubakr
    Hamila, Ridha
    Erbad, Aiman
    Kiranyaz, Serkan
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Federated Learning (FL) is a collaborative machine learning (ML) approach, where different nodes in a network contribute to learning the model parameters. In addition, FL provides several attractive features such as data privacy and energy efficiency. Due to its collaborative nature, model parameters among nodes should be efficiently exchanged, while considering the scarce availability of clean spectral slots. In this work, we propose low-power efficient algorithms for FL of model parameters updates. We consider mobile edge nodes connected to a leading node (LD) with practical wireless links, where uplink updates from the nodes to the LD are shared without orthogonalizing the resources. In particular, we adopt a non-orthogonal multiple access (NOMA) uplink scheme, and investigate its effect on the convergence round (CR) of the model updates. Through deriving an analytical expression of the CR, we leverage it to formulate an optimization problem to minimize the total number of communication rounds and maximize the communication fairness among the nodes. We further investigate the performance of our proposed algorithms by considering different factors, including limited per-node energy and node heterogeneity. Monte-Carlo simulations are used to verify the accuracy of our derived expression of the CR. Moreover, through comprehensive simulation, we show that our proposed schemes largely reduce the communication latency between the LD and the nodes, and improve the communication fairness among the nodes. 2022 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/PIMRC54779.2022.9977962
    http://hdl.handle.net/10576/41646
    Collections
    • Electrical Engineering [‎2840‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video