• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • عن المستودع الرقمي
    • الرؤية والرسالة
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
      • عرض المستودع الرقمي
      • البحث في المستودع الرقمي (البحث البسيط والبحث المتقدم)
      • ارسال عملك للمستودع الرقمي
      • مصطلحات المستودع الرقمي
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Hypertension Prediction Using Optimal Random Forest and Real Medical Data

    Thumbnail
    التاريخ
    2022
    المؤلف
    Ren, Lijuan
    Seklouli, Aicha Sekhari
    Wang, Tao
    Zhang, Haiqing
    Bouras, Abdelaziz
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Long-lasting and difficult-to-treat, hypertension frequently leads to serious and life-threatening diseases. As a result, early risk assessment and prevention of hypertension are crucial. The majority of research currently available ignore the preprocessing analysis of real medical data, particularly the analysis of missing values, in favor of using clean data to increase the performance of hypertension prediction. Thus, in this study, real but incomplete data were subjected to preprocessing analysis including missing value analysis and feature divergence analysis, and then a Bayesian optimization technique was employed to find the optimal random forest model. Experimental results showed that proper missing value strategy (i.e., MissForest) can slightly enhance the data quality and produce slightly better predictive performance (from 0.001% to 0.069%) even the missing rate is less than 1%. Additionally, compared to using the original features, removing some features with little divergence can lower the dimensionality and even marginally enhance performance by 0.161% in terms of median AUC across 50 runs. Furthermore, the optimal random forest can demonstrate better hypertension discrimination in real medical data. In our case, the optimal random forest can improve the performance of the non-optimized forest by up to 3.51%. 2022 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/SKIMA57145.2022.10029572
    http://hdl.handle.net/10576/41754
    المجموعات
    • علوم وهندسة الحاسب [‎2485‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشر

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video