• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Hypertension Prediction Using Optimal Random Forest and Real Medical Data

    Thumbnail
    Date
    2022
    Author
    Ren, Lijuan
    Seklouli, Aicha Sekhari
    Wang, Tao
    Zhang, Haiqing
    Bouras, Abdelaziz
    Metadata
    Show full item record
    Abstract
    Long-lasting and difficult-to-treat, hypertension frequently leads to serious and life-threatening diseases. As a result, early risk assessment and prevention of hypertension are crucial. The majority of research currently available ignore the preprocessing analysis of real medical data, particularly the analysis of missing values, in favor of using clean data to increase the performance of hypertension prediction. Thus, in this study, real but incomplete data were subjected to preprocessing analysis including missing value analysis and feature divergence analysis, and then a Bayesian optimization technique was employed to find the optimal random forest model. Experimental results showed that proper missing value strategy (i.e., MissForest) can slightly enhance the data quality and produce slightly better predictive performance (from 0.001% to 0.069%) even the missing rate is less than 1%. Additionally, compared to using the original features, removing some features with little divergence can lower the dimensionality and even marginally enhance performance by 0.161% in terms of median AUC across 50 runs. Furthermore, the optimal random forest can demonstrate better hypertension discrimination in real medical data. In our case, the optimal random forest can improve the performance of the non-optimized forest by up to 3.51%. 2022 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/SKIMA57145.2022.10029572
    http://hdl.handle.net/10576/41754
    Collections
    • Computer Science & Engineering [‎2485‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video