عرض بسيط للتسجيلة

المؤلفRen, Lijuan
المؤلفSeklouli, Aicha Sekhari
المؤلفWang, Tao
المؤلفZhang, Haiqing
المؤلفBouras, Abdelaziz
تاريخ الإتاحة2023-04-09T08:34:50Z
تاريخ النشر2022
اسم المنشورInternational Conference on Software, Knowledge Information, Industrial Management and Applications, SKIMA
المصدرScopus
معرّف المصادر الموحدhttp://dx.doi.org/10.1109/SKIMA57145.2022.10029572
معرّف المصادر الموحدhttp://hdl.handle.net/10576/41754
الملخصLong-lasting and difficult-to-treat, hypertension frequently leads to serious and life-threatening diseases. As a result, early risk assessment and prevention of hypertension are crucial. The majority of research currently available ignore the preprocessing analysis of real medical data, particularly the analysis of missing values, in favor of using clean data to increase the performance of hypertension prediction. Thus, in this study, real but incomplete data were subjected to preprocessing analysis including missing value analysis and feature divergence analysis, and then a Bayesian optimization technique was employed to find the optimal random forest model. Experimental results showed that proper missing value strategy (i.e., MissForest) can slightly enhance the data quality and produce slightly better predictive performance (from 0.001% to 0.069%) even the missing rate is less than 1%. Additionally, compared to using the original features, removing some features with little divergence can lower the dimensionality and even marginally enhance performance by 0.161% in terms of median AUC across 50 runs. Furthermore, the optimal random forest can demonstrate better hypertension discrimination in real medical data. In our case, the optimal random forest can improve the performance of the non-optimized forest by up to 3.51%. 2022 IEEE.
راعي المشروعThis research is supported by the Sichuan Science and Technology Program of China (No.2021YFH0107)
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc.
الموضوعhypertension
medical data
missing values
prediction
random forest
العنوانHypertension Prediction Using Optimal Random Forest and Real Medical Data
النوعConference Paper
الصفحات67-72
رقم المجلد2022-December
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة