• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • عن المستودع الرقمي
    • الرؤية والرسالة
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
      • عرض المستودع الرقمي
      • البحث في المستودع الرقمي (البحث البسيط والبحث المتقدم)
      • ارسال عملك للمستودع الرقمي
      • مصطلحات المستودع الرقمي
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Machine Learning-Based Severity Prediction Tool for the Michigan Neuropathy Screening Instrument

    Thumbnail
    عرض / فتح
    diagnostics-13-00264.pdf (3.042Mb)
    التاريخ
    2023
    المؤلف
    Haque, Fahmida
    Reaz, Mamun B. I.
    Chowdhury, Muhammad E. H.
    Shapiai, Mohd I.
    Malik, Rayaz A.
    Alhatou, Mohammed
    Kobashi, Syoji
    Ara, Iffat
    Ali, Sawal H. M.
    Bakar, Ahmad A. A.
    Bhuiyan, Mohammad A.
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Diabetic sensorimotor polyneuropathy (DSPN) is a serious long-term complication of diabetes, which may lead to foot ulceration and amputation. Among the screening tools for DSPN, the Michigan neuropathy screening instrument (MNSI) is frequently deployed, but it lacks a straightforward rating of severity. A DSPN severity grading system has been built and simulated for the MNSI, utilizing longitudinal data captured over 19 years from the Epidemiology of Diabetes Interventions and Complications (EDIC) trial. Machine learning algorithms were used to establish the MNSI factors and patient outcomes to characterise the features with the best ability to detect DSPN severity. A nomogram based on multivariable logistic regression was designed, developed and validated. The extra tree model was applied to identify the top seven ranked MNSI features that identified DSPN, namely vibration perception (R), 10-gm filament, previous diabetic neuropathy, vibration perception (L), presence of callus, deformities and fissure. The nomogram's area under the curve (AUC) was 0.9421 and 0.946 for the internal and external datasets, respectively. The probability of DSPN was predicted from the nomogram and a DSPN severity grading system for MNSI was created using the probability score. An independent dataset was used to validate the model's performance. The patients were divided into four different severity levels, i.e., absent, mild, moderate, and severe, with cut-off values of 10.50, 12.70 and 15.00 for a DSPN probability of less than 50, 75 and 100%, respectively. We provide an easy-to-use, straightforward and reproducible approach to determine prognosis in patients with DSPN. 2023 by the authors.
    DOI/handle
    http://dx.doi.org/10.3390/diagnostics13020264
    http://hdl.handle.net/10576/41930
    المجموعات
    • الهندسة الكهربائية [‎2850‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشر

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video