• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • عن المستودع الرقمي
    • الرؤية والرسالة
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
      • عرض المستودع الرقمي
      • البحث في المستودع الرقمي (البحث البسيط والبحث المتقدم)
      • ارسال عملك للمستودع الرقمي
      • مصطلحات المستودع الرقمي
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Performance Analysis of Conventional Machine Learning Algorithms for Diabetic Sensorimotor Polyneuropathy Severity Classification Using Nerve Conduction Studies

    Thumbnail
    عرض / فتح
    9690940.pdf (601.8Kb)
    التاريخ
    2022
    المؤلف
    Haque, Fahmida
    Reaz, Mamun B. I.
    Chowdhury, Muhammad E. H.
    Kiranyaz, Serkan
    Ali, Sawal H. M.
    Alhatou, Mohammed
    Habib, Rumana
    Bakar, Ahmad A. A.
    Arsad, Norhana
    Srivastava, Geetika
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Background. Diabetic sensorimotor polyneuropathy (DSPN) is a major form of complication that arises in long-term diabetic patients. Even though the application of machine learning (ML) in disease diagnosis is very common and well-established in the field of research, its application in DSPN diagnosis using nerve conduction studies (NCS), is very limited in the existing literature. Method. In this study, the NCS data were collected from the Diabetes Control and Complications Trial (DCCT) and its follow-up Epidemiology of Diabetes Interventions and Complications (EDIC) clinical trials. The NCS variables are median motor velocity (m/sec), median motor amplitude (mV), median motor F-wave (msec), median sensory velocity (m/sec), median sensory amplitude (μV), Peroneal Motor Velocity (m/sec), peroneal motor amplitude (mv), peroneal motor F-wave (msec), sural sensory velocity (m/sec), and sural sensory amplitude (μV). Three different feature ranking techniques were used to analyze the performance of eight different conventional classifiers. Results. The ensemble classifier outperformed other classifiers for the NCS data ranked when all the NCS features were used and provided an accuracy of 93.40%, sensitivity of 91.77%, and specificity of 98.44%. The random forest model exhibited the second-best performance using all the ten features with an accuracy of 93.26%, sensitivity of 91.95%, and specificity of 98.95%. Both ensemble and random forest showed the kappa value 0.82, which indicates that the models are in good agreement with the data and the variables used and are accurate to identify DSPN using these ML models. Conclusion. This study suggests that the ensemble classifier using all the ten NCS variables can predict the DSPN severity which can enhance the management of DSPN patients.
    DOI/handle
    http://dx.doi.org/10.1155/2022/9690940
    http://hdl.handle.net/10576/41933
    المجموعات
    • الهندسة الكهربائية [‎2850‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشر

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video