Deep learning techniques for liver and liver tumor segmentation: A review
Author | Gul, Sidra |
Author | Khan, Muhammad Salman |
Author | Bibi, Asima |
Author | Khandakar, Amith |
Author | Ayari, Mohamed Arselene |
Author | Chowdhury, Muhammad E.H. |
Available date | 2023-04-17T06:57:42Z |
Publication Date | 2022 |
Publication Name | Computers in Biology and Medicine |
Resource | Scopus |
Abstract | Liver and liver tumor segmentation from 3D volumetric images has been an active research area in the medical image processing domain for the last few decades. The existence of other organs such as the heart, spleen, stomach, and kidneys complicate liver segmentation and tumor identification task since these organs share identical properties in terms of shape, texture, and intensity values. Many automatic and semi-automatic techniques have been presented in recent years, in an attempt to establish a system for the reliable diagnosis and detection of liver illnesses, specifically liver tumors. With the evolution of deep learning techniques and their exceptional performance in the field of medical image processing, medical image segmentation in volumetric images using deep learning techniques has received a great deal of emphasis. The goal of this study is to provide an overview of the available deep learning approaches for segmenting liver and detecting liver tumors, as well as their evaluation metrics including accuracy, volume overlap error, dice coefficient, and mean square distance. This research also includes a detailed overview of the various 3D volumetric imaging architectures, designed specifically for the task of semantic segmentation. The comparison of approaches offered in earlier challenges for liver and tumor segmentation, as well as their dice scores derived from respective site sources, is also provided. 2022 Elsevier Ltd |
Sponsor | The authors thank the Higher Education Commission ( HEC ), Pakistan, for funding this research under the Artificial Intelligence in Healthcare, IIPL, National Center of Artificial Intelligence (NCAI). The authors gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan X Pascal used for this research. |
Language | en |
Publisher | Elsevier |
Subject | Convolutional neural network Deep learning Liver segmentation Liver tumor segmentation Medical imaging |
Type | Article |
Volume Number | 147 |
Check access options
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |
This item appears in the following Collection(s)
-
Civil and Environmental Engineering [851 items ]
-
Electrical Engineering [2649 items ]
-
Technology Innovation and Engineering Education Unit [63 items ]