• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • عن المستودع الرقمي
    • الرؤية والرسالة
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
      • عرض المستودع الرقمي
      • البحث في المستودع الرقمي (البحث البسيط والبحث المتقدم)
      • ارسال عملك للمستودع الرقمي
      • مصطلحات المستودع الرقمي
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Deep learning based classification of unsegmented phonocardiogram spectrograms leveraging transfer learning

    Thumbnail
    التاريخ
    2021
    المؤلف
    Khan, Kaleem Nawaz
    Khan, Faiq Ahmad
    Abid, Anam
    Olmez, Tamer
    Dokur, Zumray
    Khandakar, Amith
    Chowdhury, Muhammad E H
    Khan, Muhammad Salman
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Objective. Cardiovascular diseases (CVDs) are a main cause of deaths all over the world. This research focuses on computer-aided analysis of phonocardiogram (PCG) signals based on deep learning that can enable improved and timely detection of heart abnormalities. The two widely used publicly available PCG datasets are from the PhysioNet/CinC (2016) and PASCAL (2011) challenges. The datasets are significantly different in terms of the tools used for data acquisition, clinical protocols, digital storages and signal qualities, making it challenging to process and analyze. Approach. In this work, we have used short-time Fourier transform-based spectrograms to learn the representative patterns of the normal and abnormal PCG signals. Spectrograms generated from both the datasets are utilized to perform four different studies: (i) train, validate and test different variants of convolutional neural network (CNN) models with PhysioNet dataset, (ii) train, validate and test the best performing CNN structure on the PASCAL dataset, as well as (iii) on the combined PhysioNet-PASCAL dataset and (iv) finally, the transfer learning technique is employed to train the best performing pre-trained network from the first study with PASCAL dataset. Main results. The first study achieves an accuracy, sensitivity, specificity, precision and F1 scores of 95.75%, 96.3%, 94.1%, 97.52%, and 96.93%, respectively, while the second study shows accuracy, sensitivity, specificity, precision and F1 scores of 75.25%, 74.2%, 76.4%, 76.73%, and 75.42%, respectively. The third study shows accuracy, sensitivity, specificity, precision and F1 scores of 92.7%, 94.98%, 89.95%, 95.3% and 94.6%, respectively. Finally, the fourth study shows a precision of 96.98% on the noisy PASCAL dataset with transfer learning approach. Significance. The proposed approach employs a less complex and relatively light custom CNN model that outperforms most of the recent competing studies by achieving comparatively high classification accuracy and precision, making it suitable for screening CVDs using PCG signals. 2021 Institute of Physics and Engineering in Medicine.
    DOI/handle
    http://dx.doi.org/10.1088/1361-6579/ac1d59
    http://hdl.handle.net/10576/41978
    المجموعات
    • الهندسة الكهربائية [‎2850‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشر

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video