• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • عن المستودع الرقمي
    • الرؤية والرسالة
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
      • عرض المستودع الرقمي
      • البحث في المستودع الرقمي (البحث البسيط والبحث المتقدم)
      • ارسال عملك للمستودع الرقمي
      • مصطلحات المستودع الرقمي
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An Internet of Things Based Smart Waste Management System Using LoRa and Tensorflow Deep Learning Model

    Thumbnail
    عرض / فتح
    An_Internet_of_Things_Based_Smart_Waste_Management_System_Using_LoRa_and_Tensorflow_Deep_Learning_Model.pdf (3.178Mb)
    التاريخ
    2020
    المؤلف
    Sheng, Teoh Ji
    Islam, Mohammad Shahidul
    Misran, Norbahiah
    Baharuddin, Mohd Hafiz
    Arshad, Haslina
    Islam, Md. Rashedul
    Chowdhury, Muhammad E. H.
    Rmili, Hatem
    Islam, Mohammad Tariqul
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Traditional waste management system operates based on daily schedule which is highly inefficient and costly. The existing recycle bin has also proved its ineffectiveness in the public as people do not recycle their waste properly. With the development of Internet of Things (IoT) and Artificial Intelligence (AI), the traditional waste management system can be replaced with smart sensors embedded into the system to perform real time monitoring and allow for better waste management. The aim of this research is to develop a smart waste management system using LoRa communication protocol and TensorFlow based deep learning model. LoRa sends the sensor data and Tensorflow performs real time object detection and classification. The bin consists of several compartments to segregate the waste including metal, plastic, paper, and general waste compartment which are controlled by the servo motors. Object detection and waste classification is done in TensorFlow framework with pre-trained object detection model. This object detection model is trained with images of waste to generate a frozen inference graph used for object detection which is done through a camera connected to the Raspberry Pi 3 Model B+ as the main processing unit. Ultrasonic sensor is embedded into each waste compartment to monitor the filling level of the waste. GPS module is integrated to monitor the location and real time of the bin. LoRa communication protocol is used to transmit data about the location, real time and filling level of the bin. RFID module is embedded for the purpose of waste management personnel identification. 2013 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2020.3016255
    http://hdl.handle.net/10576/42007
    المجموعات
    • الهندسة الكهربائية [‎2850‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشر

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video