• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Measuring time-varying information flow in scalp EEG signals: Orthogonalized partial directed coherence

    Thumbnail
    Date
    2014-03
    Author
    Omidvarnia, Amir
    Azemi, Ghasem
    Boashash, Boualem
    Otoole, John M.
    Colditz, Paul B.
    Vanhatalo, Sampsa
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    This study aimed to develop a time-frequency method for measuring directional interactions over time and frequency from scalp-recorded electroencephalographic (EEG) signals in a way that is less affected by volume conduction and amplitude scaling. We modified the time-varying generalized partial directed coherence (tv-gPDC) method, by orthogonalization of the strictly causal multivariate autoregressive model coefficients, to minimize the effect of mutual sources. The novel measure, generalized orthogonalized PDC (gOPDC), was tested first using two simulated models with feature dimensions relevant to EEG activities. We then used the method for assessing event-related directional information flow from flash-evoked responses in neonatal EEG. For testing statistical significance of the findings, we followed a thresholding procedure driven by baseline periods in the same EEG activity. The results suggest that the gOPDC method 1) is able to remove common components akin to volume conduction effect in the scalp EEG, 2) handles the potential challenge with different amplitude scaling within multichannel signals, and 3) can detect directed information flow within a subsecond time scale in nonstationary multichannel EEG datasets. This method holds promise for estimating directed interactions between scalp EEG channels that are commonly affected by the confounding impact of mutual cortical sources.
    DOI/handle
    http://dx.doi.org/10.1109/TBME.2013.2286394
    http://hdl.handle.net/10576/4259
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video