• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Release of colloids in saturated porous media under transient hydro-chemical conditions: A pore-scale study

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0927775721000571-main.pdf (7.670Mb)
    Date
    2021
    Author
    Nishad, Safna
    Al-Raoush, Riyadh I.
    Alazaiza, Motasem Y.D.
    Metadata
    Show full item record
    Abstract
    The deposition and consequent release of colloids pose a significant challenge to the environment, groundwater quality and human health. Subsurface soil contains numerous types of colloids that exhibit a diverse range of interaction favorability with the soil grains and their impact on release behavior remains unclear. The objective of this study was to investigate, at the pore-scale, the impact of colloid interaction favorability on colloid deposition and subsequent release in response to perturbations of flow rate and solution chemistry in saturated porous media. Pore-scale experiments were conducted using a micromodel that is geometrically representative of a real sand-stone rock. Favorable, medium-favorable and unfavorable colloids (i.e., repulsion absent, repulsion at long-range of separation distances and attraction absent with the micromodel surface, respectively) were deposited in the micromodel and then a series of colloid release experiments were conducted at different conditions including increasing the flow rate, decreasing the ionic strength and increasing the solution pH. Favorable colloids exhibited extensive deposition on the collector center where the flow streamlines are parallel to the collector surface, as adhesion forces overcome hydrodynamic forces. However, at medium and high ionic strength, deposition in Forward Flow Stagnation Zone (FFSZ) was dominant for unfavorable colloids as the hydrodynamic forces are negligible. Pore-scale images showed that, upon perturbations in flow rate and solution chemistry, colloids that were initially deposited on collector centers were more susceptible to release as compared to colloids that were initially deposited in FFSZs. The negligible hydrodynamic drag forces in FFSZ and deep primary minimum interaction at short separation distances were the major factors that hindered the release of colloids in FFSZ under transient hydro-chemical conditions. The intensity of colloid deposition and release decreases as the favorability of colloids decreases and as the ionic strength decrease for unfavorable colloids. This study provides a clear insight to the pore-scale colloid deposition and release mechanisms during transient hydro-chemical conditions that help in the modeling of environmental and engineering applications including managed aquifer recharge, groundwater contamination and wastewater treatment processes. 2021 The Author(s)
    DOI/handle
    http://dx.doi.org/10.1016/j.colsurfa.2021.126188
    http://hdl.handle.net/10576/43857
    Collections
    • Civil and Environmental Engineering [‎869‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video