• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Detection of neonatal EEG burst-suppression using a time-frequency approach

    Thumbnail
    التاريخ
    2014
    المؤلف
    Awal, Md. Abdul
    Colditz, Paul B.
    Boashash, Boualem
    Azemi, Ghasem
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    In newborn EEG, the presence of burst suppression carries with it a high probability of poor neurodevelopmental outcome. This paper presents a novel method to detect neonatal bust suppression from multichannel EEG using a time-frequency (T-F) based approach. In this approach, features are extracted from T-F representations of EEG signals obtained using quadratic time-frequency distributions (QTFDs). Such features take into account the non-stationarity of EEG signals and are shown to be able to discriminate between burst and suppression patterns. The features are based on the energy concentration of the signals in the T-F domain, instantaneous frequency of the signals, and Renyi entropy and singular-value decomposition (SVD) of the TFDs of EEG. For each feature, the receiver operating characteristic (ROC) is found and the area under the ROC curve (AUC) is calculated as the performance criterion. Experimental results using EEG signals with burst suppression acquired from 3 term neonates show that the features extracted from the singular values of TFDs and energy concentration outperform others. Amongst different QTFDs, features extracted from the optimized extended modified B distribution exhibit the best performance. Also, a classifier which uses these features achieves a total accuracy of 99.6%.
    DOI/handle
    http://dx.doi.org/10.1109/ICSPCS.2014.7021073
    http://hdl.handle.net/10576/4409
    المجموعات
    • الهندسة الكهربائية [‎2821‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video