عرض بسيط للتسجيلة

المؤلفMesleh, Areej
المؤلفEhtewish, Hanan
المؤلفde la Fuente, Alberto
المؤلفAl-shamari, Hawra
المؤلفGhazal, Iman
المؤلفAl-Faraj, Fatema
المؤلفAl-Shaban, Fouad
المؤلفAbdesselem, Houari B.
المؤلفEmara, Mohamed
المؤلفAlajez, Nehad M.
المؤلفArredouani, Abdelilah
المؤلفDecock, Julie
المؤلفAlbagha, Omar
المؤلفStanton, Lawrence W.
المؤلفAbdulla, Sara A.
المؤلفEl-Agnaf, Omar M.A.
تاريخ الإتاحة2023-06-19T11:08:30Z
تاريخ النشر2023-04-18
اسم المنشورInternational Journal of Molecular Sciences
المعرّفhttp://dx.doi.org/10.3390/ijms24087443
الاقتباسMesleh, A., Ehtewish, H., de la Fuente, A., Al-Shamari, H., Ghazal, I., Al-Faraj, F., ... & El-Agnaf, O. M. (2023). Blood Proteomics Analysis Reveals Potential Biomarkers and Convergent Dysregulated Pathways in Autism Spectrum Disorder: A Pilot Study. International Journal of Molecular Sciences, 24(8), 7443.
الرقم المعياري الدولي للكتاب1661-6596
معرّف المصادر الموحدhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85157999736&origin=inward
معرّف المصادر الموحدhttp://hdl.handle.net/10576/44582
الملخصAutism spectrum disorder (ASD) is an umbrella term that encompasses several disabling neurodevelopmental conditions. These conditions are characterized by impaired manifestation in social and communication skills with repetitive and restrictive behaviors or interests. Thus far, there are no approved biomarkers for ASD screening and diagnosis; also, the current diagnosis depends heavily on a physician’s assessment and family’s awareness of ASD symptoms. Identifying blood proteomic biomarkers and performing deep blood proteome profiling could highlight common underlying dysfunctions between cases of ASD, given its heterogeneous nature, thus laying the foundation for large-scale blood-based biomarker discovery studies. This study measured the expression of 1196 serum proteins using proximity extension assay (PEA) technology. The screened serum samples included ASD cases (n = 91) and healthy controls (n = 30) between 6 and 15 years of age. Our findings revealed 251 differentially expressed proteins between ASD and healthy controls, of which 237 proteins were significantly upregulated and 14 proteins were significantly downregulated. Machine learning analysis identified 15 proteins that could be biomarkers for ASD with an area under the curve (AUC) = 0.876 using support vector machine (SVM). Gene Ontology (GO) analysis of the top differentially expressed proteins (TopDE) and weighted gene co-expression analysis (WGCNA) revealed dysregulation of SNARE vesicular transport and ErbB pathways in ASD cases. Furthermore, correlation analysis showed that proteins from those pathways correlate with ASD severity. Further validation and verification of the identified biomarkers and pathways are warranted.
راعي المشروعThis project is funded by QBRI’s internal fund and GSRA-QNRF (GSRA6-1-0616-19097).
اللغةen
الناشرMultidisciplinary Digital Publishing Institute (MDPI)
الموضوعASD
autism
biomarkers
blood profiling
early diagnosis
machine learning
patient stratification
PEA
proteomics
العنوانBlood Proteomics Analysis Reveals Potential Biomarkers and Convergent Dysregulated Pathways in Autism Spectrum Disorder: A Pilot Study
النوعArticle
رقم العدد8
رقم المجلد24
ESSN1422-0067
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة