• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An Enhancement of Compositional Stability of Phase Change Materials by Lamination with Aluminum Sheet

    Thumbnail
    View/Open
    coatings-13-00444-v2.pdf (2.541Mb)
    Date
    2023
    Author
    Kallingal, Nithusha
    Sobolčiak, Patrik
    Akbar, Himyan M.
    Krupa, Igor
    Novak, Igor
    Popelka, Anton
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The wax leakage from shape-stabilized phase change materials (SSPCMs) is a limitation because it reduces their functionality. In this work, an enhancement of the compositional stability of SSPCMs formed by high-density polyethylene (HDPE) and paraffin wax blends through a lamination by aluminum (Al) foil was studied. The materials' thermal conductivity was enhanced by adding expanded graphite (EG). The lamination of SSPCMs is the simplest method of reducing leakage, but it suffers from poor adhesion between polymer-based blends and protecting layers. The improved adhesion between SSPCMs and Al foil was achieved by adding 2 wt.% of maleated polyethylene (PE) acting as an adhesion promoter into SSPCMs or by plasma treatment of both SSPCMs and Al surfaces. Microscopic, spectroscopic, and optical techniques were used to analyze the surface and adhesion properties of SSPCMs. The peel resistance of SSPCMs after plasma treatment or modification by maleated PE increased from 2.2 N/m to 7.2 N/m or 55.1 N/m, respectively. The wax leakage from the treated or modified SSPCMs was suppressed significantly. The plasma-treated or maleated PE-modified SSPCMs showed leakage of 0.5 wt.% or 0.2 wt.%, respectively, after three days of leakage test. It indicates a good potential of this treatment/modification for industrially applied SSPCMs.
    DOI/handle
    http://dx.doi.org/10.3390/coatings13020444
    http://hdl.handle.net/10576/44819
    Collections
    • Center for Advanced Materials Research [‎1570‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video