• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Sustainable Development
  • Center for Sustainable Development Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Sustainable Development
  • Center for Sustainable Development Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Anaerobic Digestion of Olive MillWastewater and Process Derivatives—Biomethane Potential, Operation of a Continuous Fixed Bed Digester, and Germination Index

    Thumbnail
    View/Open
    Main article (1.616Mb)
    Date
    2023-08-25
    Author
    Pluschke, Jonas
    Faßlrinner, Katharina
    Hadrich, fatma
    Loukil, Slim
    Chamkha, Mohamed
    Geißen, Sven-Uwe
    Sayadi, Sami
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Olive mill wastewater (OMW) management is an economic and environmental challenge for olive oil-producing countries. The recovery of components with high added value, such as antioxidants, is a highly researched approach that could help refinance performant wastewater treatment systems. Anaerobic (co-)digestion is a suitable process to valorize the energetic and nutritional content of OMW and OMW-derived waste streams from resource recovery processes. Issues of process stability, operation, and yields discourage industrial application. Deepening the understanding of biomethane potential, continuous anaerobic digester operational parameters, and co-substrates is key to large-scale implementation. The biomethane potential of different OMWderived samples and organic solid market waste as co-substrate was 106–350 NL methane per kg volatile solids (VS). The highest yields were obtained with the co-substrate and depolyphenolized OMW mixed with retentate from an ultrafiltration pretreatment. Over 150 days, an anaerobic fixed-bed 300 L digester was operated with different OMW-derived substrates, including OMW with selectively reduced polyphenol concentrations. Different combinations of organic loading rate and hydraulic retention time were set. The biogas yields ranged from 0.97 to 0.99 L of biogas per g of volatile solids (VS) eliminated, with an average methane content in the produced biogas of 64%. Potential inhibition of the process due to high polyphenol concentrations or over-acidification through volatile fatty acids was avoided in the continuous process through process and substrate manipulation.
    DOI/handle
    http://dx.doi.org/10.3390/app13179613
    http://hdl.handle.net/10576/46980
    Collections
    • Center for Sustainable Development Research [‎340‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video