• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • عن المستودع الرقمي
    • الرؤية والرسالة
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
      • عرض المستودع الرقمي
      • البحث في المستودع الرقمي (البحث البسيط والبحث المتقدم)
      • ارسال عملك للمستودع الرقمي
      • مصطلحات المستودع الرقمي
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة المدنية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة المدنية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Locating leaks in water mains using noise loggers

    Thumbnail
    التاريخ
    2016-09
    المؤلف
    El-Abbasy, Mohammed S.
    Mosleh, Fadi
    Senouci, Ahmed
    Zayed, Tarek
    Al-Derham, Hassan
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Because of their potential danger to public health, economic loss, environmental damage, and energy waste, underground water pipelines leaks have received more attention globally. Researchers have proposed active leakage control approaches to localize, locate, and pinpoint leaks. Noise loggers have usually been used only for localizing leaks while other tools were used for locating and pinpointing. These approaches have resulted in additional cost and time. Thus, regression and artificial neural network (ANN) models were developed in this study to localize and locate leaks in water pipelines using noise loggers. Several lab experiments have been conducted to simulate actual leaks in a sample ductile iron pipeline distribution network with valves. The noise loggers were used to detect these leaks and record their noise readings. The recorded noise readings were then used as input data for the developed models. The ANN models outperformed regression models during testing. Moreover, ANN models were successfully validated using an actual case study.
    DOI/handle
    http://dx.doi.org/10.1061/(ASCE)IS.1943-555X.0000305
    http://hdl.handle.net/10576/4771
    المجموعات
    • الهندسة المدنية [‎881‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشر

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video