عرض بسيط للتسجيلة

المؤلفYílmaz, M. Akín
المؤلفKelesş, Onur
المؤلفGüven, Hilal
المؤلفTekalp, A. Murat
المؤلفMalik, Junaid
المؤلفKíranyaz, Serkan
تاريخ الإتاحة2023-09-24T08:57:18Z
تاريخ النشر2021
اسم المنشورProceedings - International Conference on Image Processing, ICIP
المصدرScopus
الرقم المعياري الدولي للكتاب2381-8549
معرّف المصادر الموحدhttp://dx.doi.org/10.1109/ICIP42928.2021.9506041
معرّف المصادر الموحدhttp://hdl.handle.net/10576/47890
الملخصIn end-to-end optimized learned image compression, it is standard practice to use a convolutional variational autoencoder with generalized divisive normalization (GDN) to transform images into a latent space. Recently, Operational Neural Networks (ONNs) that learn the best non-linearity from a set of alternatives, and their "self-organized" variants, Self-ONNs, that approximate any non-linearity via Taylor series have been proposed to address the limitations of convolutional layers and a fixed nonlinear activation. In this paper, we propose to replace the convolutional and GDN layers in the variational autoencoder with self-organized operational layers, and propose a novel self-organized variational autoencoder (Self-VAE) architecture that benefits from stronger non-linearity. The experimental results demonstrate that the proposed Self-VAE yields improvements in both rate-distortion performance and perceptual image quality.
راعي المشروعThis work was supported by TUBITAK projects 217E033 and 120C156, and a grant from Turkish Is Bank to KUIS AI Center. A. M. Tekalp also acknowledges support from Turkish Academy of Sciences (TUBA).
اللغةen
الناشرIEEE Computer Society
الموضوعEnd-to-end learned image compression
Perceptual quality metrics
Rate-distortion performance
Self-organized operational layer
Variational autoencoder
العنوانSELF-ORGANIZED VARIATIONAL AUTOENCODERS (SELF-VAE) FOR LEARNED IMAGE COMPRESSION
النوعConference Paper
الصفحات3732-3736
رقم المجلد2021-September
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة