• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Medicine
  • Medicine Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Medicine
  • Medicine Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    AGEomics Biomarkers and Machine Learning—Realizing the Potential of Protein Glycation in Clinical Diagnostics

    Thumbnail
    View/Open
    ijms-23-04584-with-cover.pdf (4.787Mb)
    Date
    2022-04-21
    Author
    Rabbani, Naila
    Metadata
    Show full item record
    Abstract
    Protein damage by glycation, oxidation and nitration is a continuous process in the physiological system caused by reactive metabolites associated with dicarbonyl stress, oxidative stress and nitrative stress, respectively. The term AGEomics is defined as multiplexed quantitation of spontaneous modification of proteins damage and other usually low-level modifications associated with a change of structure and function—for example, citrullination and transglutamination. The method of quantitation is stable isotopic dilution analysis liquid chromatography—tandem mass spec-trometry (LC-MS/MS). This provides robust quantitation of normal and damaged or modified amino acids concurrently. AGEomics biomarkers have been used in diagnostic algorithms using machine learning methods. In this review, I describe the utility of AGEomics biomarkers and provide evidence why these are close to the phenotype of a condition or disease compared to other metabolites and metabolomic approaches and how to train and test algorithms for clinical diagnostic and screening applications with high accuracy, sensitivity and specificity using machine learning approaches.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85128382942&origin=inward
    DOI/handle
    http://dx.doi.org/10.3390/ijms23094584
    http://hdl.handle.net/10576/48446
    Collections
    • Medicine Research [‎1759‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video