• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Investigating the characteristics of a magnetorheological fluid damper through CFD modeling

    Thumbnail
    View/Open
    Badri_2021_Mater._Res._Express_8_055701.pdf (2.197Mb)
    Date
    2021-05-12
    Author
    Badri, Yousif
    Syam, Thaer
    Sassi, Sadok
    Hussein, Mohammed
    Renno, Jamil
    Ghаni, Sаud
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Computational Fluid Dynamics (CFD) analysis is conducted on mono-tube vehicle MRF damper investigated experimentally in a previous study. In this study, the fluid of the type MRF-132DG was inserted inside a damper of a car rear suspension system. The CFD analysis describes the fluid flow through the internal orifices between the compression and the rebound chambers. Averaged Navier-Stokes equations were solved by the SIMPLE method, and the RNG k-ϵ was used to model the turbulence at the fluid crossing through the orifices. All the CFD model boundary conditions' values were set to the same values reported in the previous experimental study, except for the viscosity values. When varying the applied magnetic field density, the changes of MRF's viscosity values were assessed by using a viscosity meter. Results showed a viscosity increase of 70% when the magnetic field excitation current was elevated from 0 A to 5 A. The damping forced and damping values were calculated using the rebound and compression static pressures obtained from the contour plots. It was also observed that the damping values exponentially increase with the increase in viscosity. The results of the CFD simulation were compared against those from the experiments, and good matching was observed.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85106213870&origin=inward
    DOI/handle
    http://dx.doi.org/10.1088/2053-1591/abfcf6
    http://hdl.handle.net/10576/49881
    Collections
    • Civil and Environmental Engineering [‎867‎ items ]
    • Mechanical & Industrial Engineering [‎1472‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video