• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Distribution-Free Adaptive Step-Down Procedure for Fault Identification

    Thumbnail
    Date
    2016-12
    Author
    Turkoz, Mehmet
    Kim, Sangahn
    Jeong, Young-Seon
    Al-Khalifa, Khalifa N.
    Hamouda, Abdel Magid
    Metadata
    Show full item record
    Abstract
    Identifying the faulty variables of the out-of-control signal in high-dimensional process is an important problem for quality control areas. Even though there have been several procedures for fault variable identifications, most of the existing approaches assume the multivariate normal distribution of observations and are sensitive to the correlations between variables. Therefore, in this paper, we propose a new fault variable identification method that does not assume any specific distribution of observations. The proposed procedure based on one class classification method identifies the changed variables by identifying unchanged variables at each step using the information obtained from the previous steps. This strategy can reduce computational times when a few variables are changed in a high-dimensional process. In addition, the proposed procedure is robust to the correlations between variables, resulting in stable performance regardless of the number of changed variables. The experiment results with diverse dataset demonstrate superiority of the proposed distribution-free procedure.
    DOI/handle
    http://dx.doi.org/10.1002/qre.2096
    http://hdl.handle.net/10576/5122
    Collections
    • Mechanical & Industrial Engineering [‎1461‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video