• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • رسائل الماجستير وأطروحات الدكتوراه
  • كلية الهندسة
  • الحوسبة
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • رسائل الماجستير وأطروحات الدكتوراه
  • كلية الهندسة
  • الحوسبة
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Detecting Non-Technical Losses in Smart Grids Using Statistical Distances of Forecasting Residuals

    عرض / فتح
    Emran Altamimi_ OGS Approved Thesis.pdf (8.642Mb)
    التاريخ
    2024-01
    المؤلف
    Al Tamimi, Emran Mohannad
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Energy theft poses a significant challenge to the sustainability of smart grids, affecting the financial stability of electrical utilities and the overall management of resources. In this thesis, we present a novel load forecasting residuals based framework for detecting electricity theft using forecasting models and statistical distances. Our approach involves forecasting daily energy consumption and generating residuals, which are then compared to residuals from normal days using a statistical distance. Aday with a statistical distance exceeding a predetermined threshold is flagged as a potential energy theft incident. The proposed framework can be seamlessly integrated into existing forecasting models with minimal computational overhead for statistical distance calculation. Additionally, the framework offers high explainability, substantially reducing the costs associated with false positives. We evaluated the performance of our approach using two publicly available datasets, testing its ability to detect twelve energy theft attack models and faulty meters. Our framework demonstrated better performance than the state of the art on two different forecasting models across two different datasets.
    DOI/handle
    http://hdl.handle.net/10576/51457
    المجموعات
    • الحوسبة [‎103‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video