• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Pharmacy
  • Pharmacy Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Pharmacy
  • Pharmacy Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Inhibition of p90 ribosomal S6 kinase attenuates cell migration and proliferation of the human lung adenocarcinoma through phospho-GSK-3β and osteopontin

    Thumbnail
    Date
    2016-07
    Author
    Abdulrahman, Nabeel
    Jaballah, Maiy
    Poomakkoth, Noufira
    Riaz, Sadaf
    Abdelaziz, Somaia
    Issa, Aya
    Mraiche, Fatima
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    p90 ribosomal S6 kinase (p90RSK) constitutes a family of serine/threonine kinases that have been shown to be involved in cell proliferation of various malignancies via direct or indirect effects on the cell-cycle machinery. We investigated the role of p90RSK in lung adenocarcinomas and whether the inhibition of p90RSK diminishes cancer progression. Moreover, we investigated the involvement of glycogen synthase kinase-3β (GSK-3β) and osteopontin (OPN) in the p90RSK-induced lung adenocarcinoma progression. p90RSK, OPN, and GSK-3β protein expressions were examined in the A549 human lung adenocarcinoma cell line in the presence and absence of BI-D1870 (BID), a p90RSK inhibitor. Gene expression of anti-apoptotic and pro-apoptotic markers namely Bcl2 and Bax, respectively, were studied by reverse transcription polymerase chain reaction. In addition, the A549 lung adenocarcinoma cell line was characterized for cell proliferation using the MTT assay and cell migration using the scratch migration assay. Our study revealed that total RSK1 protein expression is over expressed in the A549 human lung adenocarcinoma cell line, an effect which is significantly reduced upon pretreatment with BID (69.32 ± 12.41 % of control; P < 0.05). The inhibition of p90RSK also showed a significant suppression of cell proliferation (54.3 ± 6.73 % of control; P < 0.01) and cell migration (187.90 ± 16.10 % of control; P < 0.01). Treatment of the A549 cells with BID regressed the expression of Bcl2 mRNA (56.92 ± 6.07 % of control; P < 0.01). BID also regressed protein expression of OPN (79.57 ± 5.32 % of control; P < 0.05) and phospho-GSK-3β (73.04 ± 8.95 % of control; P < 0.05). The p90RSK has an essential role in promoting tumor growth and proliferation in non-small cell lung cancer (NSCLC). BID may serve as an alternative cancer treatment in NSCLC.
    DOI/handle
    http://dx.doi.org/10.1007/s11010-016-2727-9
    http://hdl.handle.net/10576/5193
    Collections
    • Pharmacy Research [‎1419‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video