• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Optimal Energy Dispatch Engine for PV-DG-ESS Hybrid Power Plants Considering Battery Degradation and Carbon Emissions

    Thumbnail
    عرض / فتح
    Optimal_Energy_Dispatch_Engine_for_PV-DG-ESS_Hybrid_Power_Plants_Considering_Battery_Degradation_and_Carbon_Emissions.pdf (1.727Mb)
    التاريخ
    2023
    المؤلف
    Kanaan, Laith
    Ismail, Loay S.
    Gowid, Samer
    Meskin, Nader
    Massoud, Ahmed M.
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Uncertainties in load and solar power forecasting, complex energy storage system (ESS) constraints, and feedback correction pose challenges for very short-term and short-term hybrid power plant scheduling. This paper proposes a two-stage mixed-integer linear programming (MILP)-based energy dispatch engine (EDE). The proposed model ensures optimized scheduling through accurate load and power forecasting, a feedback correction loop, and a set of constraints governing the state of charge (SOC) and state of health (SOH) of the ESS. Such an EDE aims to reduce the plant's operating costs and the usage of diesel generators (DGs), and minimize the cost of carbon emissions. To test the performance of the developed model, real-time load and photovoltaic (PV) data were used in conjunction with a PV-DG-ESS hybrid plant. The system was evaluated against a heuristic control model and a multistage stochastic control model, with the daily overall electricity and carbon emission costs as evaluation metrics. The test results revealed a 9.2% and 3.5% decrease in daily costs compared to the heuristic and stochastic methods, respectively, and a 29.4% decrease in carbon emission costs.
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2023.3281562
    http://hdl.handle.net/10576/53010
    المجموعات
    • الهندسة الكهربائية [‎2840‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video