• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Effect of surfactant and electron treatment on the electrical and thermal conductivity as well as thermal and mechanical properties of ehylene vinyl acetate/expanded graphite composites

    Thumbnail
    Date
    2015-08-20
    Author
    Sefadi, Jeremia Shale
    Luyt, Adriaan Stephanus
    Pionteck, Jürgen
    Piana, Francesco
    Gohs, Uwe
    Metadata
    Show full item record
    Abstract
    This study presents an investigation of the electrical and thermal conductivities of composites based on an ethylene vinyl acetate (EVA) copolymer matrix and nanostructured expanded graphite (EG). To improve the EG dispersion in EVA, EG sheets were modified by treating them with the anionic surfactant sodium dodecyl sulphate (SDS) in water. The modified SDS-EG platelets, after being filtered and dried, were melt-mixed with EVA to prepare the composites. Finally, both EVA/EG and EVA/SDS-EG composites were subjected to 50 kGy electron beam (EB) irradiation. SEM images confirm that the irradiated EVA/EG samples had improved interfacial adhesion, while the irradiated EVA/SDS-EG samples showed even better interfacial adhesion. The gel contents of the irradiated samples without and with SDS treatment increased with increase in EG loading. The EVA/EG composites exhibited a sharp transition from an insulator to a conductor at an electrical percolation threshold of 8 wt %, but with SDS-EG the electrical conductivity was extremely low, showing no percolation up to 10 wt % of filler. The EB irradiation had no influence on electrical conductivity. The thermal conductivity linearly increased with EG content, and this increase was more pronounced in the case of SDS-EG, but decreased after EB irradiation. The thermal properties were little influenced by EB irradiation, while better polymer–filler interaction and better filler dispersion as a result of SDS treatment, and the EB irradiation initiated formation of a cross-linked network, had a positive effect on the tensile properties.
    DOI/handle
    http://dx.doi.org/10.1002/APP.42396
    http://hdl.handle.net/10576/5313
    Collections
    • Center for Advanced Materials Research [‎1551‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video