• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Collaborative Byzantine Resilient Federated Learning

    Thumbnail
    عرض / فتح
    Collaborative_Byzantine_Resilient_Federated_Learning.pdf (1.514Mb)
    التاريخ
    2023
    المؤلف
    Gouissem, A.
    Abualsaud, K.
    Yaacoub, E.
    Khattab, T.
    Guizani, M.
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Federated learning (FL) enables an effective and private distributed learning process. However, it is vulnerable against several types of attacks, such as Byzantine behaviors. The first purpose of this work is to demonstrate mathematically that the traditional arithmetic-averaging model-combining approach will ultimately diverge to an unstable solution in the presence of Byzantine agents. This article also proposes a low-complexity, decentralized Byzantine resilient training mechanism. The proposed technique identifies and isolates hostile nodes rather than just mitigating their impact on the global model. In addition, the suggested approach may be used alone or in conjunction with other protection techniques to provide an additional layer of security in the event of misdetection. The suggested solution is decentralized, allowing all participating nodes to jointly identify harmful individuals using a novel cross check mechanism. To prevent biased assessments, the identification procedure is done blindly and is incorporated into the regular training process. A smart activation mechanism based on flag activation is also proposed to reduce the network overhead. Finally, general mathematical proofs combined with extensive experimental results applied in a healthcare electrocardiogram (ECG) monitoring scenario show that the proposed techniques are very efficient at accurately predicting heart problems.
    DOI/handle
    http://dx.doi.org/10.1109/JIOT.2023.3266347
    http://hdl.handle.net/10576/53520
    المجموعات
    • علوم وهندسة الحاسب [‎2428‎ items ]
    • الهندسة الكهربائية [‎2821‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video