• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Repair of Heat-Damaged RC Beams Using Micro-concrete Modified with Carbon Nanotubes

    View/Open
    s12205-021-0904-1.pdf (2.910Mb)
    Date
    2021-04-16
    Author
    Barham, Wasim S.
    Irshidat, Mohammad R.
    Awawdeh, Abdelrahman
    Metadata
    Show full item record
    Abstract
    This paper investigates the use of micro-concrete modified with carbon nanotubes (CNTs) for the repair of heat-damaged reinforced concrete (RC) beams. Ten RC beams were cast and then subjected to elevated temperature of 550ºC for two hours. The damaged beams were then repaired using micro-concrete integrating CNTs and tested under four-point bending. Different factors were taken into consideration in this research: CNTs modification, depth of repair, aggregate size of the repair material, and curing period. The repair material was applied on the tension side of the beam. Test results showed that micro-concrete with a larger aggregate size was more effective as a repair material than smaller sized aggregate micro-concrete. CNTs modification had little impact on the flexural strength of the repaired beams, but clearly enhanced the stiffness. The increase in the repair depth improved the strength recovery of the repaired beams but did not influence the failure mode. Curing period of the repaired beams significantly affected their stiffness but not their ultimate load and toughness. To investigate the mineral composition of repair material, scanning electron microscopy (SEM) was conducted for the micro-concrete with and without CNTs modified cementitious. The SEM image showed the CNTs are uniformly dispersed in the cement matrix. The CNTs and the products of the hydration process formed a meshwork structure. The CNTs acted as fillers to the voids, leading to an increase in the compressive strength.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85104523070&origin=inward
    DOI/handle
    http://dx.doi.org/10.1007/s12205-021-0904-1
    http://hdl.handle.net/10576/53951
    Collections
    • Center for Advanced Materials Research [‎1498‎ items ]
    • Civil and Environmental Engineering [‎862‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video