• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Pharmacy
  • Pharmacy Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Pharmacy
  • Pharmacy Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Temporal cross talk between endoplasmic reticulum and mitochondria regulates oxidative stress and mediates microparticle-induced endothelial dysfunction

    Thumbnail
    View/Open
    Open Access Accepted Manuscript (1.440Mb)
    Date
    2017-01-01
    Author
    Safiedeen, Zainab
    Rodríguez-Gómez, Isabel
    Vergori, Luisa
    Soleti, Raffaella
    Vaithilingam, Dayannath
    Douma, Imene
    Agouni, Abdelali
    Leiber, Denis
    Dubois, Séverine
    Simard, Gilles
    Zibara, Kazem
    Andriantsitohaina, Ramaroson
    Martínez, M. Carmen
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Aims: Circulating microparticles (MPs) from metabolic syndrome patients and those generated from apoptotic T-cells induce endothelial dysfunction; however, the molecular and cellular mechanism(s) underlying in the effects of MPs remain to be elucidated. Results: Here, we show that both types of MPs increased expression of endoplasmic reticulum (ER) stress markers XBP-1, p-eIF2alpha and CHOP and nuclear translocation of ATF6 on human aortic endothelial cells. MPs decreased in vitro nitric oxide release by human aortic endothelial cells, whereas in vivo MP injection into mice impaired the endothelium-dependent relaxation induced by acetylcholine. These effects were prevented when ER stress was inhibited suggesting that ER stress is implicated in the endothelial effects induced by MPs. MPs affected mitochondrial function and evoked sequential increase of cytosolic and mitochondrial reactive oxygen species (ROS). Pharmacological inhibition of ER stress and silencing of neutral sphingomyelinase with siRNA abrogated all MP-mediated effects. Neutralization of Fas-Ligand carried by MPs abolished effects induced by both MP types, whereas neutralization of low density lipoprotein-receptor on endothelial cells prevented T-lymphocyte MP-mediated effects. Innovation and Conclusion: Collectively, endothelial dysfunction triggered by MPs involves temporal cross-talk between ER and mitochondria with respect to spatial regulation of ROS via the neutral sphingomyelinase and interaction of MPs with Fas and/or low density lipoprotein-receptor. These results provide a novel molecular insight into the manner MPs mediate vascular dysfunction and allow identification of potential therapeutic targets to treat vascular complications associated with metabolic syndrome.
    DOI/handle
    http://dx.doi.org/10.1089/ars.2016.6771
    http://hdl.handle.net/10576/5462
    Collections
    • Pharmacy Research [‎1426‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video