• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar University Young Scientists Center
  • Research of Qatar University Young Scientists Center
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar University Young Scientists Center
  • Research of Qatar University Young Scientists Center
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Enhancement of photovoltaic module performance by thermal management using shape-stabilized PCM composites

    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0927024824002605-main.pdf (7.252Mb)
    Date
    2024-08-15
    Author
    Safna, Nishad
    Ahmad, Zubair
    Krupa, Igor
    Metadata
    Show full item record
    Abstract
    Thermal management of photovoltaic (PV) panels is crucial due to the deterioration of their electrical efficiency at elevated operating temperatures. Therefore, thermal protection of PV against overheating is highly required. This study investigated the applicability of the shape-stabilized phase change material (PCM) composites for temperature regulation of PV modules (PVM). Paraffin waxes (PW) with specific melting temperatures infiltrate graphite foam (GF) to prepare the GF_PW composite. The PCM composites are coated with expanded graphite-modified epoxy resin to prevent PW leakage after melting and to maintain product stability, integrity, and mechanical strength. The performance improvement of PVMs integrated with two types of GF_PW composites with different phase change temperatures of 35 and 44 °C (labeled RT35 and RT44, respectively) was studied. The adequate latent heat and thermal conductivity of the epoxy-coated GF_PW composites ranged from 126.5 to 138.1 J/g and from 2.03 to 2.15 W/m°C, respectively. The GF_RT44 and GF_RT35 composites, used as passive heat absorbing elements, reduced the PVM surface temperature by 27 and 32 °C, respectively, enhancing the PVM efficiency by 10.9 and 18.5 % of the reference configuration consisting of the PVM alone. To our knowledge, the PVM efficiency enhancement obtained in this study is the highest among PVMs integrated with PCM composites reported in the literature.
    URI
    https://www.sciencedirect.com/science/article/pii/S0927024824002605
    DOI/handle
    http://dx.doi.org/10.1016/j.solmat.2024.112948
    http://hdl.handle.net/10576/55248
    Collections
    • Center for Advanced Materials Research [‎1482‎ items ]
    • Materials Science & Technology [‎315‎ items ]
    • Research of Qatar University Young Scientists Center [‎213‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video