• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Shear strength of geosynthetic composite systems for design of landfill liner and cover slopes

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2011
    Author
    Eid, Hisham T.
    Metadata
    Show full item record
    Abstract
    Torsional ring shear tests were performed on composite specimens that simulate the field alignment of municipal solid waste (MSW) landfill liner and cover system components. Simultaneous shearing was provided to each test specimen without forcing failure to occur through a pre-determined plane. Composite liner specimens consisted of a textured geomembrane (GM) underlain by a needle-punched geosynthetic clay liner (GCL) which in turn underlain by a compacted silty clay. Hydrated specimens were sheared at eleven different normal stress levels. Test results revealed that shear strength of the composite liner system can be controlled by different failure modes depending on the magnitude of normal stress and the comparative values of the GCL interface and internal shear strength. Failure following these modes may result in a bilinear or trilinear peak strength envelope and a corresponding stepped residual strength envelope. Composite cover specimens that comprised textured GM placed on unreinforced smooth GM-backed GCL resting on compacted sand were sheared at five different GCL hydration conditions and a normal stress that is usually imposed on MSW landfill cover geosynthetic components. Test results showed that increasing the GCL hydration moves the shearing plane from the GCL smooth GM backing/sand interface to that of the textured GM/hydrated bentonite. Effects of these interactive shear strength behaviors of composite liner and cover system components on the possibility of developing progressive failure in landfill slopes were discussed. Recommendations for designing landfill geosynthetic-lined slopes were subsequently given. Three-dimensional stability analysis of well-documented case history of failed composite system slope was presented to support the introduced results and recommendations.
    DOI/handle
    http://dx.doi.org/10.1016/j.geotexmem.2010.11.005
    http://hdl.handle.net/10576/55918
    Collections
    • Civil and Environmental Engineering [‎862‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video