• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar University Young Scientists Center
  • Research of Qatar University Young Scientists Center
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar University Young Scientists Center
  • Research of Qatar University Young Scientists Center
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Influence of polyolefin modified by Y2O3 as protective coatings against carbon steel corrosion into 3.5% NaCl media

    Thumbnail
    Date
    2023
    Author
    Mallick, Shoaib
    Bhadra, Jolly
    Shakoor, R. A.
    Nawaz, Muddasir
    Al-Qahtani, Noora Hamad S.
    Radwan, Ahmed Bahgat
    Haddadd, Muhsen El
    Ahmed, Ayesha
    Al Mughrbi, Aya R. Hamad
    Abdelmoati, Mohamed
    Alademi, Hanan
    Al Thani, Noora
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    In this research work, we have studied the impact of Yttrium nanoparticles loaded with corrosion inhibitors dodecylamine (DOC) incorporated in polyolefin for the corrosion protection of steel. The surface analysis of pure polyolefin and polyolefin-Y2O3-DOC composite coatings by atomic force spectroscopy (AFM) shows that both of the coated samples' roughness almost remain the same. Furthermore, the contact angle measurement shows an increase in the hydrophobicity of polyolefin-Y2O3 with inhibitor. The release behavior of the corrosion inhibitors DOC was also studied at different pH. The x-ray diffraction for the loaded product shows that no physical and structural changes occur during the loading of the corrosion inhibitor. The electrochemical impedance spectroscopy (EIS) analysis demonstrates that smart polyolefin-Y2O3-DOC coating has better anticorrosion properties than pure polyolefin coating due to the effective release of DOC. An increase in charge transfer and pore resistance confirms the better barrier properties of the polyolefin-Y2O3-DOC composite coating. The inhibition efficiency of the polyolefin modified by Y2O3 increased by 99% as compared to pure polyolefin coating. The carbon steel substrate became stable and the polymeric composite coating protectected the steel against corrosion in the oil and gas industry. In conclusion, the study shows that yttrium nanoparticles loaded with corrosion inhibitors incorporated in polyolefin have a significant impact on the corrosion protection of steel.
    DOI/handle
    http://dx.doi.org/10.1007/s42247-023-00555-3
    http://hdl.handle.net/10576/56555
    Collections
    • Center for Advanced Materials Research [‎1482‎ items ]
    • Chemical Engineering [‎1194‎ items ]
    • Dental Medicine Research [‎407‎ items ]
    • Mechanical & Industrial Engineering [‎1461‎ items ]
    • Pharmacy Research [‎1389‎ items ]
    • Research of Qatar University Young Scientists Center [‎213‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video