• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    On the DoF of X-Networks With Synergistic Alternating CSIT: A Step Towards Integrated Communication and Sensing

    Thumbnail
    View/Open
    On_the_DoF_of_X-Networks_With_Synergistic_Alternating_CSIT_A_Step_Towards_Integrated_Communication_and_Sensing.pdf (1.319Mb)
    Date
    2022
    Author
    Shaban, Ahmed Wagdy
    Seif, Mohamed
    Khattab, Tamer
    El-Keyi, Amr
    Nafie, Mohammed
    Zorba, Nizar
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The coexistence of communication and sensing services in the next wireless communication systems, i.e., beyond 5G and 6G systems, revive the central role of interference management techniques such as interference alignment, coordinated multipoint transmission, and cell-free massive multiple-input–multiple-output (MIMO), in defeating interference and achieving the network capacity. In this article, we consider the $K$ -user single-input–single-output (SISO) X-channel and its variants ( $2 \times K$ and $K \times 2$ ) in fast-fading environments. This can theoretically model many practical use cases for beyond 5G and 6G networks. For instance, it can model the case of having $K$ cars communicating with another $K$ cars, while former cars are sensing environment using the latter ones (in a cooperative, bistatic, and active approach) over the same time and frequency resources. We assume that the transmitters have access to synergistic alternating channel state information at the transmitter (CSIT) where it alternates between three states: perfect (P), delayed (D), and no-CSIT (N), and these states are associated with fractions of time denoted by $\lambda _{P}$ , $\lambda _{D}$ , and $\lambda _{N}$ , respectively. We develop novel degree-of-freedom (DoF) achievability schemes that exploit the synergy of the instantaneous CSIT and the delayed CSIT to retrospectively align interference in the subsequent channel uses. In particular, we show that the sum DoF of the $K$ -user SISO X-channel is at least ${2K}/{K + 1}$ , using a two-phase transmission scheme over finite symbols channel extension and under a certain distribution of the CSIT availability of $\Lambda (\lambda _{P}=({1}/{3}), \lambda _{D}= ({1}/{3}), \lambda _{N}=({1}/{3}))$ . This achievability result can be considered as a tight lower bound where it coincides with the best lower bound known for the same network but with partial output feedback instead of alternating CSIT. In addition, it shows that the role of synergistically alternating CSIT with distribution $\Lambda ({1}/{3},{1}/{3},{1}/{3})$ is equivalent to the one of the partial output feedback. Moreover, we show the optimality of the proposed two-phase-based scheme using a simple combinatorial proof. This establishes a DoF lower bound, which is strictly better than the best lower bound known for the case of delayed CSI for all values of $K$ . Thus, the proposed schemes offer higher DoF gain in comparison to delayed CSIT and no-CSIT.
    DOI/handle
    http://dx.doi.org/10.1109/ICJECE.2022.3195957
    http://hdl.handle.net/10576/56595
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video