• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Traffic Forecasting using Temporal Line Graph Convolutional Network: Case Study

    عرض / فتح
    Traffic_Forecasting_using_Temporal_Line_Graph_Convolutional_Network_Case_Study.pdf (207.6Kb)
    التاريخ
    2020
    المؤلف
    Ramadan, Abdelrahman
    Elbery, Ahmed
    Zorba, Nizar
    Hassanein, Hossam S.
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Traffic forecasting is imperative to Intelligent Transportation Systems (ITS), and it has always been considered as a challenging research topic, due to the complex topological structure of the urban road network and the temporal stochastic nature of dynamic change. Popular sports events attract vast numbers of spectators travelling to the event, which will have a substantial effect on ITS, showing peaks on the network that can collapse a smart city's ITS. In this paper, we tackle traffic forecasting and use the Doha network in Qatar and the FIFA World Cup 2022 (FWC 2022) event as a case study. We propose a novel technique for embedding road network graphs into a Temporal-Graph Convolutional Network. The embedding process includes a modification to the graph weights based on graph theory and the properties of the line graph. Extensive simulations are carried out on a real-world calibrated dataset from Doha's road network. Our Temporal Line Graph Convolutional Network (TLGCN) proposal shows outstanding performance when compared to state-of-the-art techniques, not only for huge special events but also for the regular daily traffic.
    DOI/handle
    http://dx.doi.org/10.1109/ICC40277.2020.9149233
    http://hdl.handle.net/10576/56618
    المجموعات
    • الهندسة الكهربائية [‎2821‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video