• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Medicine
  • Medicine Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Medicine
  • Medicine Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Review of Artificial Intelligence Applications in Hematology Management: Current Practices and Future Prospects

    Thumbnail
    Date
    2022
    Author
    El Alaoui, Yousra
    Elomri, Adel
    Qaraqe, Marwa
    Padmanabhan, Regina
    Yasin Taha, Ruba
    El Omri, Halima
    EL Omri, Abdelfatteh
    Aboumarzouk, Omar
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Background: Machine learning (ML) and deep learning (DL) methods have recently garnered a great deal of attention in the field of cancer research by making a noticeable contribution to the growth of predictive medicine and modern oncological practices. Considerable focus has been particularly directed toward hematologic malignancies because of the complexity in detecting early symptoms. Many patients with blood cancer do not get properly diagnosed until their cancer has reached an advanced stage with limited treatment prospects. Hence, the state-of-the-art revolves around the latest artificial intelligence (AI) applications in hematology management. Objective: This comprehensive review provides an in-depth analysis of the current AI practices in the field of hematology. Our objective is to explore the ML and DL applications in blood cancer research, with a special focus on the type of hematologic malignancies and the patient's cancer stage to determine future research directions in blood cancer. Methods: We searched a set of recognized databases (Scopus, Springer, and Web of Science) using a selected number. We included studies written in English and published between 2015 and 2021. For each study, we identified the ML and DL techniques used and highlighted the performance of each model. Results: Using the aforementioned inclusion criteria, the search resulted in 567 papers, of which 144 were selected for review. Conclusions: The current literature suggests that the application of AI in the field of hematology has generated impressive results in the screening, diagnosis, and treatment stages. Nevertheless, optimizing the patient's pathway to treatment requires a prior prediction of the malignancy based on the patient's symptoms or blood records, which is an area that has still not been properly investigated.
    DOI/handle
    http://dx.doi.org/10.2196/36490
    http://hdl.handle.net/10576/56906
    Collections
    • Medicine Research [‎1794‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video