• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The Fabrication of Halogen-Doped FeWO4 Heterostructure Anchored over Graphene Oxide Nanosheets for the Sunlight-Driven Photocatalytic Degradation of Methylene Blue Dye

    Thumbnail
    View/Open
    molecules-28-07022-v3.pdf (3.854Mb)
    Date
    2023
    Author
    Irfan, Muhammad
    Tahir, Noor
    Zahid, Muhammad
    Noreen, Saima
    Yaseen, Muhammad
    Shahbaz, Muhammad
    Mustafa, Ghulam
    Shakoor, Rana A.
    Shahid, Imran
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Rapid industrialization and urbanization are the two significant issues causing environmental pollution. The polluted water from various industries contains refractory organic materials such as dyes. Heterogeneous photocatalysis using semiconductor metal oxides is an effective remediation technique for wastewater treatment. In this research, we used a co-precipitation-assisted hydrothermal method to synthesize a novel I-FeWO4/GO sunlight-active nanocomposite. Introducing dopant reductive iodine species improved the catalytic activity of FeWO4/GO. I− ions improved the catalytic performance of H2O2 by doping into FeWO4/GO composite. Due to I− doping and the introduction of graphene as a support medium, enhanced charge separation and transfer were observed, which is crucial for efficient heterogeneous surface reactions. Various techniques, like FTIR, SEM-EDX, XRD, and UV–Vis spectroscopy, were used to characterize composites. The Tauc plot method was used to calculate pristine and iodine-doped FeWO4/GO bandgap. Iodine doping reduced the bandgap from 2.8 eV to 2.6 eV. The degradation of methylene blue (MB) was evaluated by optimizing various parameters like catalyst concentration, oxidant dose, pH, and time. The optimum conditions for photocatalysts where maximum degradation occurred were pH = 7 for both FeWO4/GO and I-FeWO4/GO; oxidant dose = 9 mM and 7 mM for FeWO4/GO and I-FeWO4/GO; and catalyst concentration = 30 mg and 35 mg/100 mL for FeWO4/GO and I-FeWO4/GO; the optimum time was 120 min. Under these optimum conditions, FeWO4/GO and I-FeWO4/GO showed 92.0% and 97.0% degradation of MB dye.
    DOI/handle
    http://dx.doi.org/10.3390/molecules28207022
    http://hdl.handle.net/10576/57711
    Collections
    • Center for Advanced Materials Research [‎1482‎ items ]
    • Marine Science Cluster [‎215‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video