• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Sustainable Development
  • Center for Sustainable Development Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Sustainable Development
  • Center for Sustainable Development Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Decision support model for optimal design of wind technologies based techno-economic approach

    Thumbnail
    View/Open
    Decision_Support_Model_for_Optimal_Design_of_Wind_Technologies_Based_TechnoEconomic_Approach.pdf (1.048Mb)
    Date
    2021
    Author
    Bourhim, Fatima-Azahraa
    Berrhazi, Samir
    Ouammi, Ahmed
    Benchrifa, Rachid
    Metadata
    Show full item record
    Abstract
    This paper aims to propose a practical decision support model for the optimal design of future wind turbines based on available wind potential on the site of interest. A developed decision support model based a comprehensive wind turbine modeling and a constrained techno-economic optimization framework is presented. Optimization was subject to the Net Present Value (NPV) maximization of the net incomes from wind energy generation, under the constraints on wind turbine nominal power restriction and the maximum ratio permitted between the rotor diameter and tower hub height. Optimizations of rotor diameter and tower height sizing have direct impacts on energy and cost production, those parameters have been considered as the design variables. The optimal design selection considers: the nominal power, rotor diameter, and tower hub height, which led to the maximum NPV in a specific site. Furthermore, an analysis of the Levelized Cost of Energy production (LCOE) has been performed. The developed decision support model has been tested and applied to a case study to validate its application and performance. The developed model was verified and significant results were achieved using three different wind sites: Dakhla, Casablanca, and Tanger. Results showed that the optimal design of the wind turbine technologies is given by the limit conditions cited, conducting to the maximum NPV with low LCOE and more exploitation of available wind potential in Dakhla and Tanger; however Casablanca was found as no profitable site for wind projects presenting negative NPV.
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2021.3123561
    http://hdl.handle.net/10576/57732
    Collections
    • Center for Sustainable Development Research [‎340‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video