Antibacterial Polyvinylchloride Pre-Treated by Barrier Plasma
Date
2010Author
Novák, IgorPopelka, Anton
Matyašovskỳ, Ján
Jurkovič, Peter
Lehockỳ, Marián
Vesel, Alenka
Šoltés, Ladislav
Asadinezhad, Ahmad
...show more authors ...show less authors
Metadata
Show full item recordAbstract
A multistep physicochemical approach making use of plasma technology combined with wet chemistry has fueled considerable interest in delivery of surface-active antiadherence materials. In the first step of the approach, concerning an inherent lack of befitting functional groups on pristine substrate, plasma treatment at low temperature and atmospheric pressure has been substantiated to be productive in yielding reactive entities on the surface [1, 5]. The highlights the functionality of the adopted multistep physicochemical approach to bind polysaccharide species onto the medical-grade PVC surface. DCSBD plasma is capable of raising roughness, surface free energy, and introducing oxygen-containing functionalities anchored onto the surface. A structured poly(acrylic acid) brush of high graft density is synthesized using surface-initiated approach to further improve hydrophilicity and develop a stable brush-like assembly to yield a platform for biomolecular binding. In vitro bacterial adhesion and biofilm formation assays indicate incapability of single chitosan layer in hindering the adhesion of Staphylococcus aureus bacterial strain. Chitosan could retard Escherichia coli adhesion and plasma treated and graft copolymerized samples are found effective to diminish the adherence degree of Escherichia Coli.
DOI/handle
http://hdl.handle.net/10576/57750Collections
- Center for Advanced Materials Research [1379 items ]