• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    RL-CEALS: Reinforcement Learning for Collaborative Edge Assisted Live Streaming

    عرض / فتح
    RL-CEALS_Reinforcement_Learning_for_Collaborative_Edge_Assisted_Live_Streaming.pdf (1.084Mb)
    التاريخ
    2023
    المؤلف
    Mrad, Ilyes
    Baccour, Emna
    Hamila, Ridha
    Khan, Muhammed Asif
    Erbad, Aiman
    Hamdi, Mounir
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Crowdsourced live streaming services (CLS) present significant challenges due to massive data size and dynamic user behavior. Service providers must accommodate personalized QoE requests, while managing computational burdens on edge servers. Existing CLS approaches use a single edge server for both transcoding and user service, potentially overwhelming the selected node with high computational demands. In response to these challenges, we propose the Reinforcement Learning-based-Collaborative Edge-Assisted Live Streaming (RL-CEALS) framework. This innovative approach fosters collaboration between edge servers, maintaining QoE demands and distributing computational burden cost-effectively. By sharing tasks across multiple edge servers, RL-CEALS makes smart decisions, efficiently scheduling serving and transcoding of CLS. The design aims to minimize the streaming delay, the bitrate mismatch, and the computational and bandwidth costs. Simulation results reveal substantial improvements in the performance of RL-CEALS compared to recent works and baselines, paving the way for a lower cost and higher quality of live streaming experience.
    DOI/handle
    http://dx.doi.org/10.1109/ISCC58397.2023.10218244
    http://hdl.handle.net/10576/57846
    المجموعات
    • الهندسة الكهربائية [‎2840‎ items ]
    • أبحاث مركز قطر لابتكارات التكنولوجيا [‎278‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video