Effect of AlN on the Mechanical and Electrochemical Properties of Aluminum Metal Matrix Composites
Abstract
In the present investigation, aluminum metal matrix composites (AMMs) reinforced with aluminum nitride (AlN) nanoparticulates at different volumetric ratios of (0, 0.5, 1, 1.5, and 2 vol.%) were manufactured via a microwave-assisted powder metallurgy technique. The morphological, physical, mechanical, and electrochemical properties of the produced billets were examined to reflect the impact of the successive addition of AlN into the aluminum (Al) matrix. The morphological analysis revealed the high crystalline patterns of the formation of the Al-AlN composites. The microstructural analysis confirmed the presence of the elemental constituents of Al and AlN particles in the fabricated composites, showing an enhanced degree of agglomeration in conjunction with the additional amount of AlN. Positive behavior exhibited by the micro- and nanohardness was noticeable in the Al-AlN composites, especially at the ultimate concentration of AlN in the Al matrix of a 2 vol.%, where it reached 669.4 ± 28.1 MPa and 659.1 ± 11 MPa compared to the pure Al metal at 441.2 ± 20 MPa and 437.5 ± 11 MPa, respectively. A declining trend in the compressive strength was recorded in the reinforced Al samples. The corrosion resistance of the AlN-reinforced Al metal matrix was estimated at 3.5 wt.% NaCl using electrochemical impedance spectroscopy and potentiodynamic polarization. The results reveal that the inclusion of 2.0 vol.%AlN led to the lowest corrosion rate.
Collections
- Center for Advanced Materials Research [1378 items ]
- Mechanical & Industrial Engineering [1396 items ]