Show simple item record

AuthorKumar, Amit
AuthorIslam, Md Redwan
AuthorZughaier, Susu M.
AuthorChen, Xianyan
AuthorZhao, Yiping
Available date2024-09-23T06:45:20Z
Publication Date2024
Publication NameSpectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy
ResourceScopus
ISSN13861425
URIhttp://dx.doi.org/10.1016/j.saa.2024.124627
URIhttp://hdl.handle.net/10576/59148
AbstractThe SERS spectra of six bacterial biomarkers, 2,3-DHBA, 2,5-DHBA, Pyocyanin, lipoteichoic acid (LTA), Enterobactin, and β-carotene, of various concentrations, were obtained from silver nanorod array substrates, and the spectral peaks and the corresponding vibrational modes were identified to classify different spectra. The spectral variations in three different concentration regions due to various reasons have imposed a challenge to use classic calibration curve methods to quantify the concentration of biomarkers. Depending on baseline removal strategy, i.e., local or global baseline removal, the calibration curve differed significantly. With the aid of convolutional neural network (CNN), a two-step process was established to classify and quantify biomarker solutions based on SERS spectra: using a specific CNN model, a remarkable differentiation and classification accuracy of 99.99 % for all six biomarkers regardless of the concentration can be achieved. After classification, six regression CNN models were established to predict the concentration of biomarkers, with coefficient of determination R2 > 0.97 and mean absolute error (MAE) < 0.27. The feature of important calculations indicates the high classification and quantification accuracies were due to the intrinsic spectral features in SERS spectra. This study showcases the synergistic potential of SERS and advanced machine learning algorithms and holds significant promise for bacterial infection diagnostics.
SponsorA.K., S.Z., and Y.Z. were partially funded by Qatar National Research Fund Grant number NPRP12S-0224-190144 , and A.K, R.I., X.C., and Y.Z. are funded by the USDA NIFA Grant number 2023-67015-39237 .
Languageen
PublisherElsevier
SubjectBiomarkers
Machine learning
Silver nanorod array
Surface enhanced Raman scattering (SERS)
TitlePrecision classification and quantitative analysis of bacteria biomarkers via surface-enhanced Raman spectroscopy and machine learning
TypeArticle
Volume Number320
dc.accessType Full Text


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record