• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Explainable ensemble learning framework for estimating corrosion rate in suspension bridge main cables

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S2590123024009782-main.pdf (11.33Mb)
    Date
    2024
    Author
    Jimenez Rios, Alejandro
    Ben Seghier, Mohamed El Amine
    Plevris, Vagelis
    Dai, Jian
    Metadata
    Show full item record
    Abstract
    Ensuring the safe operation of suspension bridges is paramount to prevent unwanted events that can cause failures. Therefore, it is crucial to continuously monitor their operational status to uphold safety and reliability levels. However, natural deterioration caused by the surrounding environment, primarily due to corrosion, inevitably impacts these structures over time, particularly the main cables made of steel. In this study, a robust framework is proposed to predict the annual corrosion rate in main cables of suspension bridges, while investigating the impact of the surrounding environmental factors on this process. To do so, the implementation of four regression models and four machine learning techniques are used in the first phase for modeling the annual corrosion rate based on a comprehensive database containing various environmental factors. The modeling performance is evaluated through a range of statistical and graphical metrics. After that, Shapley Additive Explanations (SHAP) is utilized to explain the model and to extract the impact of each variable on the final modeling results. Overall, the findings demonstrate the effectiveness of the proposed framework for addressing this issue. The Extreme Gradient Boosting (XGB) emerged as the top-performing model, achieving an overall R2 of 0.982. Moreover, the SHAP findings highlight the impact of CL− on the annual corrosion rate as the factor with the highest influence during the modeling process. The high performance of the proposed model suggests its potential utility in further research concerning the reliability of suspension bridge main cables.
    DOI/handle
    http://dx.doi.org/10.1016/j.rineng.2024.102723
    http://hdl.handle.net/10576/59640
    Collections
    • Civil and Environmental Engineering [‎867‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video