• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة المدنية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة المدنية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Explainable ensemble learning framework for estimating corrosion rate in suspension bridge main cables

    Thumbnail
    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    1-s2.0-S2590123024009782-main.pdf (11.33Mb)
    التاريخ
    2024
    المؤلف
    Jimenez Rios, Alejandro
    Ben Seghier, Mohamed El Amine
    Plevris, Vagelis
    Dai, Jian
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Ensuring the safe operation of suspension bridges is paramount to prevent unwanted events that can cause failures. Therefore, it is crucial to continuously monitor their operational status to uphold safety and reliability levels. However, natural deterioration caused by the surrounding environment, primarily due to corrosion, inevitably impacts these structures over time, particularly the main cables made of steel. In this study, a robust framework is proposed to predict the annual corrosion rate in main cables of suspension bridges, while investigating the impact of the surrounding environmental factors on this process. To do so, the implementation of four regression models and four machine learning techniques are used in the first phase for modeling the annual corrosion rate based on a comprehensive database containing various environmental factors. The modeling performance is evaluated through a range of statistical and graphical metrics. After that, Shapley Additive Explanations (SHAP) is utilized to explain the model and to extract the impact of each variable on the final modeling results. Overall, the findings demonstrate the effectiveness of the proposed framework for addressing this issue. The Extreme Gradient Boosting (XGB) emerged as the top-performing model, achieving an overall R2 of 0.982. Moreover, the SHAP findings highlight the impact of CL− on the annual corrosion rate as the factor with the highest influence during the modeling process. The high performance of the proposed model suggests its potential utility in further research concerning the reliability of suspension bridge main cables.
    DOI/handle
    http://dx.doi.org/10.1016/j.rineng.2024.102723
    http://hdl.handle.net/10576/59640
    المجموعات
    • الهندسة المدنية [‎869‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video