• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة المدنية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة المدنية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    INVESTIGATION OF PERFORMANCE METRICS IN REGRESSION ANALYSIS AND MACHINE LEARNING-BASED PREDICTION MODELS

    Thumbnail
    عرض / فتح
    download.pdf (989.1Kb)
    التاريخ
    2022
    المؤلف
    Plevris, Vagelis
    Solorzano, German
    Bakas, Nikolaos P.
    Ben Seghier, Mohamed El Amine
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Performance metrics (Evaluation metrics or error metrics) are crucial components of regression analysis and machine learning-based prediction models. A performance metric can be defined as a logical and mathematical construct designed to measure how close the predicted outcome is to the actual result. A variety of performance metrics have been described and proposed in the literature. Knowledge about the metrics' properties needs to be systematized to simplify their design and use. In this work, we examine various regression related metrics (14 in total) for continuous variables, including the most widely used ones, such as the (root) mean squared error, the mean absolute error, the Pearson correlation coefficient, and the coefficient of determination, among many others. We provide their mathematical formulations, as well as a discussion on their use, their characteristics, advantages, disadvantages, and limitations, through theoretical analysis and a detailed numerical example. The 10 unitless metrics are further investigated through a numerical analysis with Monte Carlo Simulation based on (i) random guessing and (ii) the addition of random noise with various noise ratios to the predicted values. Some of the metrics show a poor or inconsistent performance, while others exhibit good performance as evaluation measures of the "goodness of fit". We highlight the importance of the usage of the right metrics to obtain good predictions in machine learning and regression models in general.
    DOI/handle
    http://dx.doi.org/10.23967/eccomas.2022.155
    http://hdl.handle.net/10576/59677
    المجموعات
    • الهندسة المدنية [‎867‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video