• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    VULNERABILITY ASSESSMENT OF CULTURAL HERITAGE STRUCTURES

    Thumbnail
    View/Open
    download (2).pdf (991.7Kb)
    Date
    2022
    Author
    Kioumarsi, M.
    Plevris, V.
    Shabani, A.
    Metadata
    Show full item record
    Abstract
    Cultural heritage (CH) assets are the legacy of a society that are inherited from the past generations and can give us lessons for contemporary construction. Not only the formally recognized CH assets but also the non-CH structures and infrastructure, and the interconnection between them are crucial to be considered in a vulnerability assessment tool for the sustainable reconstruction of historic areas. Since most CH assets were not designed based on robust design codes to resist natural hazards such as earthquakes, vulnerability assessment and preservation are pivotal tasks for the authorities. For this aim, Hyperion, an H2020 project (Grant agreement No 821054), was formed in order to take advantage of existing tools and services together with novel technologies to deliver an integrated vulnerability assessment platform for improving the resiliency of historic areas. Geometric documentation is the first and most important step toward the generation of digital twins of CH assets that can be facilitated using 3D laser scanners or drone imaging. Afterward, the finite element method is an accurate approach for developing the simulation-based digital twins of cultural heritage assets. For calibration of the models, the result of the operational modal analysis from the ambient vibration testing using accelerometers can be utilized. Structural analysis for the prediction of the structural behavior or near real-time analysis can be carried out on the calibrated models. However, the full finite element analysis needs a lot of computational effort, and to tackle this limitation, equivalent frame methods can be utilized.
    DOI/handle
    http://dx.doi.org/10.23967/eccomas.2022.294
    http://hdl.handle.net/10576/59678
    Collections
    • Civil and Environmental Engineering [‎867‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video