• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    SDCL: A Framework for Secure, Distributed, and Collaborative Learning in Smart Grids

    Thumbnail
    Date
    2024-05-01
    Author
    Abdellatif, Alaa Awad
    Shaban, Khaled
    Massoud, Ahmed
    Metadata
    Show full item record
    Abstract
    The future of electric grids is undergoing a remarkable transformation driven by the increasing adoption of emerging technologies, notably Artificial Intelligence (AI) and Blockchain. These innovative technologies are revolutionizing smart grid management by introducing novel approaches that enhance efficiency, reliability, and sustainability, all while securing information across distributed grid components. AI empowers predictive analytics and real-time optimization, while Blockchain ensures secure and transparent transactions, laying the foundation for a more resilient and adaptive electrical grid system. This article introduces a novel Secure, Distributed, and Collaborative Learning (SDCL) framework for the smart grid. The SDCL framework leverages advances in distributed learning and blockchain technologies to provide scalability, secure data exchange, and rapid response capabilities. The proposed architecture not only enables secure data and model exchange among different microgrids but also facilitates the integration of multiple microgrids and distributed network operators. This integration enables the correlation of unforeseen events and enhances the management and control of emerging failures. Our resilient, blockchain-based architecture optimizes information sharing and security levels within the blockchain, accommodating diverse requirements for smart grid services. Finally, we highlight the advantages of the proposed SDCL framework and outline future research directions that warrant further investigation.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85193928789&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/IOTM.001.2300059
    http://hdl.handle.net/10576/60179
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video