• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A machine learning-based battery management system for state-of-charge prediction and state-of-health estimation for unmanned aerial vehicles

    Thumbnail
    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    1-s2.0-S2352152X23007776-main.pdf (2.334Mb)
    التاريخ
    2023-08-30
    المؤلف
    Shibl, Mostafa M.
    Ismail, Loay S.
    Massoud, Ahmed M.
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Unmanned aerial vehicles (UAVs) are becoming more popular as they start to be utilized in many applications, such as surveillance, agriculture, and military. However, due to their limited battery capacity, a proper battery management system (BMS) is required to avoid flight delays and crashes, which can be highly expensive in terms of cost and time. SoC prediction and SoH estimation can help ensure the arrival of UAVs to their destination and increase the lifetime and efficiency of the battery. A UAV BMS is based on machine learning (ML), where the ML models predict the SoC and estimate the SoH based on the voltage and current of the battery, and ambient temperature. Deep Neural Networks (DNN) and Long Short-Term Memory (LSTM) are utilized for SoC prediction as a regression problem, and Random Forest (RF) was utilized for SoH estimation through a classification problem with four classes. The results verified the reliability of the ML models due to their high accuracy. The estimation of SoC using the DNN model had a low mean squared error of 7.6E−4 and a high explained variance score of 0.98. In addition, the prediction of SoC using the LSTM model had a low mean squared error of 0.023 and a high explained variance score of 0.97. Moreover, the RF model achieved a high accuracy of 0.92 at classifying SoH. Regarding the practical implementation, the system was deployed through the utilization of a drone, ESP32 microcontrollers, a Raspberry Pi gateway, and a cloud server, which proved the reliability and effectiveness of the ML-based BMS.
    معرّف المصادر الموحد
    https://www.sciencedirect.com/science/article/pii/S2352152X23007776
    DOI/handle
    http://dx.doi.org/10.1016/j.est.2023.107380
    http://hdl.handle.net/10576/60199
    المجموعات
    • الهندسة الكهربائية [‎2840‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video