• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز قطر لابتكارات التكنولوجيا
  • أبحاث مركز قطر لابتكارات التكنولوجيا
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز قطر لابتكارات التكنولوجيا
  • أبحاث مركز قطر لابتكارات التكنولوجيا
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Entropy Field Decomposition Based Outage Detection for Ultra-Dense Networks

    Thumbnail
    عرض / فتح
    Entropy_Field_Decomposition_Based_Outage_Detection_for_Ultra-Dense_Networks.pdf (7.526Mb)
    التاريخ
    2021
    المؤلف
    Asghar, Ahmad
    Farooq, Hasan
    Qureshi, Haneya Naeem
    Abu-Dayya, Adnan
    Imran, Ali
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Ambitious quality of experience expectations from 5G mobile cellular networks have spurred the research towards ultra-dense heterogeneous networks (UDHNs). However, due to coverage limitations of millimeter wave cells and lack of coverage data in UDHNs, discovering coverage lapses in such 5G networks may become a major challenge. Recently, numerous studies have explored machine learning-based techniques to detect coverage holes and cell outages in legacy networks. Majority of these techniques are susceptible to noise in the coverage data and only characterize outages in the spatial domain. Thus, the temporal impact of an outage, i.e., the duration of its presence remains unidentified. In this paper, for the first time, we present an outage detection solution that characterizes outages in both space and time while also being robust to noise in the coverage data. We do so by employing entropy field decomposition (EFD) which is a combination of information field theory and entropy spectrum pathways theory. We demonstrate that compared to other techniques such as independent component analysis and k-means clustering, EFD returns accurate detection results for outage detection even in the presence of heavy shadowing in received signal strength data which makes it ideal for practical implementation in emerging mobile cellular networks.
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2021.3056551
    http://hdl.handle.net/10576/60230
    المجموعات
    • أبحاث مركز قطر لابتكارات التكنولوجيا [‎278‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video